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A morphodynamic model is developed and analysed to gain fundamental understand-
ing of the basic physical mechanisms responsible for the characteristics of shoreface-
connected sand ridges observed in some coastal seas. These alongshore rhythmic bed
forms have a horizontal lengthscale of order 5 km and are related to the mean current
along the coast: the seaward ends of their crests are shifted upstream with respect to
where they are attached to the shoreface. The model is based on the two-dimensional
shallow water equations and assumes that the sediment transport only takes place
during storms. The flux consists of a suspended-load part and a bed-load part and
accounts for the effects of spatially non-uniform wave stirring as well as for the
preferred downslope movement of sediment. The basic state of this model represents
a steady longshore current, driven by wind and a pressure gradient. The dynamics
of small perturbations to this state are controlled by a physical mechanism which is
related to the transverse bottom slope. This causes a seaward deflection of the current
over the ridges and the loss of sediment carrying capacity of the flow into deeper
water. The orientation, spacing and shape of the modelled ridges agree well with
field observations. Suspended-load transport and spatially non-uniform wave stirring
are necessary in order to obtain correct e-folding timescales and migration speeds.
The ridge growth is only due to suspended-load transport whereas the migration is
controlled by bed-load transport.

1. Introduction
Shoreface-connected sand ridges are elongated rhythmic bed forms (typical wave-

lengths of 4–10 km) found in the inner part of some continental shelves. Such ridges
are present, for example, near the east coast of the United States of America (Duane
et al. 1972; Swift et al. 1985), on the inner shelf along the Argentine coast (Parker,
Lanfredi & Swift 1982), near the German coast (Antia 1996) and along the central
Dutch coast (Van de Meene, Boersma & Terwindt 1996). These ridges are not relict
features: there is geological evidence that they are active under the present hydrody-
namic conditions and their growth has taken place during the Holocene, see Swift et
al. (1985) and Van de Meene et al. (1996).

The ridges start at the offshore end of the shoreface and they extend seaward
forming an angle of 20◦–35◦ with respect to the coastline. In contrast with the further
offshore tidal sand banks (see e.g. Hulscher, De Swart & De Vriend 1993), their
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orientation is not cyclonically oriented with respect to the tidal current. In fact, their
orientation is related to the dominant storm-driven current: the seaward end of the
ridges are shifted upstream with respect to where they are attached to the shoreface.
Hereafter we will refer to this as upcurrent rotated bars.

From the field studies mentioned above it appears that the length of individual
crests is between 10 and 25 km. Their height varies from 1 to 6 m in water depths
between 4 and 20 m. The North American ridges and some of the Argentine ridges
are asymmetric, with the seaward side steeper than their landward side. The ridges
slowly migrate in the direction of the dominant current with a characteristic celerity
of 1–10 m yr−1. According to Van de Meene et al. (1996) they are relevant to the
dynamics of the coastal system.

It has already been demonstrated by Swift et al. (1985) and Trowbridge (1995)
that the frequent occurrence of storm-driven currents is important for the presence
of shoreface-connected ridges. Indeed, net currents can be up to 0.5 m s−1 in the areas
where the ridges are observed. At this point it becomes relevant to distinguish between
micro-tidal shelves, such as along the American shelf, and meso-tidal shelves (near the
Dutch and German coast: tidal currents up to 1 m s−1). On meso-tidal shelves bottom
stresses are often sufficiently strong, even during fair weather conditions, to erode
and transport sediment. Usually this results in a variety of large-scale bed forms,
including tidal sand banks and shoreface-connected ridges. However, on micro-tidal
shelves sediment transport mainly occurs during storms and usually the only large-
scale bed forms observed are shoreface-connected ridges. To limit the scope of the
present study we will focus, as was done in previous studies, on the dynamics of
shoreface-connected ridges on micro-tidal inner shelves. Possible extension to meso-
tidal shelves will be discussed in § 6.

Trowbridge (1995), Falqués et al. (1998a) and Falqués, Calvete & Montoto (1998b)
have demonstrated that the growth of these features can be explained as inherent
free instabilities of the coupled fluid bottom system. This approach was also used
to explain other bottom patterns, such as sea ripples (Blondeaux 1990), sand waves
(Hulscher 1996), nearshore bars and morphology (Hino 1974; Christensen, Deigaard
& Fredsoe 1994; Falqués, Montoto & Iranzo 1996a, b), tidal sand banks (Huthnance
1982; Hulscher et al. 1993), and free bars in rivers (Schielen, Doelman & De Swart
1993, and references therein).

Trowbridge (1995) studied the morphologic stability properties of a storm-driven
alongshore current, with a cross-shore gradient, on a shelf bounded by a straight coast
and with a transverse slope. His model consists of the two-dimensional horizontal
momentum equations and mass conservation for the water motion, supplemented
with a bottom evolution equation and a parametrization of the sediment transport.
A notable assumption in this model is the condition of irrotational flow. Hence
production of vorticity by bottom frictional torques and Coriolis terms, which has
been proven to be important for large-scale sand banks dynamics (see Zimmerman
1981; Huthnance 1982), is not considered. Furthermore, Trowbridge (1995) assumes
the sediment flux to be linear in the mean flow velocity and the effect of spatially
non-uniform wave stirring as well as the downslope effect on the transport direction
are neglected. Despite these limitations, Trowbridge’s model is able to predict the
growth of topographic features similar in shape to the observed ones and with the
correct orientation with respect to the current. The underlying physical mechanism is
the offshore deflection of the flow over the shoals and the related loss of sediment-
carrying capacity in the offshore direction, which stems from the transverse bottom
slope. However, as a result of the simplifications the model does not predict a preferred
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spacing between ridge crests. Furthermore, the ratio of the timescales related to the
growth and migration of the bed forms is not in accordance with field data. Also
the instability mechanism appears to be sensitive to the profile of the storm-driven
current.

In order to gain further knowledge about the dynamics of shoreface-connected
sand ridges we investigate in this paper a generalized and physically more realistic
model for both the water and sediment motion on storm-dominated micro-tidal inner
shelves. A basic assumption underlying the model is that the growth of the ridges
mainly takes place during storms, as is indicated by both observations (Duane et al.
1972; Swift et al. 1978; Parker et al. 1982; Van de Meene et al. 1996; Antia 1996) and
model studies (Trowbridge 1995). Stormy weather, which occurs during a certain time
fraction µ (typically µ ∼ 0.01–0.05), is characterized by large wave orbital velocity
amplitudes compared with the mean depth-averaged current. The combined action of
wave stirring and net currents causes a significant suspended-load sediment transport
on the inner shelf, see e.g. Niedoroda, Swift & Hopkins (1984), Niedoroda & Swift
(1991) and Green et al. (1995), whereas during fair weather there is hardly any
sediment transport. This motivates the use of a probabilistic model, in which a fair
weather state and a stormy weather state are distinguished. To study the growth of
the ridges, only the equations of motion which are representative for storm conditions
have to be considered.

The fluid will be described by the full two-dimensional shallow water equations
which include bottom friction and Coriolis terms. The sediment flux will consist of
both a suspended-load part and a bed-load part and accounts for the effects of depth-
dependent stirring by waves and the preferred downslope movement of the sediment.
It will be shown that these extensions result in good agreement between model
predictions and field observations. In particular the incorporation of suspended-load
fluxes and depth-dependent stirring, which have not been considered in this context
before, is crucial to obtain realistic growth rates for the ridges.

In the next section the model equations and boundary conditions are formulated.
Section 3 discusses the solution procedure. The results for the growth rates, migration
speeds and spatial patterns of the bed forms and the water motion are investigated
in § 4. The robustness of the model with respect to changing parameter values is
discussed and the model results are compared with field data. In § 5 the physical
mechanisms within the model are discussed, followed by a discussion in § 6 and some
concluding remarks in the final section.

2. Model formulation
2.1. Equations of motion

As shown in figure 1, the inner shelf is schematized as a sloping seabed, bounded by
a straight vertical wall which represents the seaward end of the shoreface. Further
offshore, a horizontal flat bottom shows the outer shelf. An orthogonal coordinate
system is taken with the x-, y- and z-axes pointing in the cross-shore, longshore and
vertical directions, respectively. The still water level is represented by z = 0. The fluid
motions are considered to be governed by the depth- and wave-averaged shallow
water equations:

∂v

∂t
+ (v · ∇)v + fez × v = −g∇zs +

τ

ρD
, (2.1)

∂D

∂t
+ ∇ · (Dv) = 0. (2.2)
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Figure 1. Sketch of the geometry and the coordinate system.
For explanation of the symbols see the text.

Here v is the current vector, f ∼ 10−4 s−1 is the Coriolis parameter, ez is a unity
vector in the vertical direction, τ represents the free surface and bottom stress terms
(τ = τ s − τ b) and ρ is the water density. In the momentum equations (2.1) forcing
terms caused by wave-induced radiation stresses and horizontal momentum diffusion
can also be considered, but they are neglected in the present study. The free surface,
the bottom and the total height of the water column are given by z = zs, z = zb and D,
with zb = −H(x) + h and D = zs + zb. Here H(x) is the mean bathymetry of the inner
shelf (averaged over time and the longshore direction) and h the bottom elevation
with respect to the mean profile. The nabla-operator is defined by ∇ = (∂/∂x, ∂/∂y).
The bottom evolution follows from the sediment conservation equation:

(1− p)∂zb
∂t

+ ∇ · q = 0, (2.3)

where q denotes the volumetric sediment flux, excluding the pores, per unit width and
p is the bed porosity (p ∼ 0.4).

As was already explained in the introduction, the growth of the ridges mainly
occurs during storms and take place on a long timescale, O(103) yr. Hence, all the
governing equations and state variables are assumed to be representative for storm
conditions. Furthermore we remark that the wave motion is not explicitly modelled,
but only used in a parametric way to determine the bed shear stress τ b and the
sediment flux q.

The boundary conditions are that at x = 0 (the transition from shoreface to inner
shelf) and for x → ∞ the cross-shore flow component vanishes and the bottom
elevation is fixed to its reference value. These conditions are motivated by the fact
that the ridges are trapped at the inner shelf and that exchange processes between
inner shelf and shoreface can be neglected. Notice that the condition of vanishing
perturbations far offshore is consistent with the fact that we are looking for inherent
instabilities of the inner shelf rather than forced behaviour driven by offshore features.

2.2. Bed shear stress and sediment transport during storms

In order to close the model the bed shear stress τ b and the sediment flux q during
stormy weather conditions (wave orbital velocities are large compared to the mean
currents) have to be specified. The mean bottom stress is described by the linear



Modelling shoreface-connected sand ridges 173

friction law

τ b = ρr∗v, (2.4)

where the friction coefficient r∗ is proportional to the amplitude uw of the wave orbital
velocity. Note that the bottom friction is related to the depth-averaged velocity,
rather than to the bottom velocity. This approach follows from Jenter & Madsen
(1989) where theoretical values for both a linear and a quadratic drag coefficient are
computed. In principle a quadratic bed shear stress could also be used in (2.4), but
Falqués et al. (1998b) have shown that this has only a minor effect on the final results.

In this study it is assumed that uw , and thereby r∗, is a function of the mean
undisturbed water depth H which only depends on the cross-shore coordinate x. A
crude parametrization, which accounts for the decreasing wave activity in larger water
depths, is

uw = uw0

(
H

H0

)−m/2
, r∗ = r∗0

(
H

H0

)−m/2
. (2.5)

This result is derived from a simple wave shoaling model, in which it is assumed
that the waves are linear and nearly symmetrical. Note that a depth-dependent linear
friction coefficient is consistent with the field measurements on the inner shelf, as
discussed by Lentz & Winant (1986). The required input conditions are the values at
x = 0 of the water depth H0, the wave orbital velocity amplitude uw0 and the friction
coefficient r∗0, as well as the coefficient m. Characteristic values for the Long Island
inner shelf, which is considered in this paper as a default test case for our model,
are H0 ∼ 14 m, uw0 ∼ 1.0 m s−1, r∗0 ∼ 1.0× 10−3 m s−1, and m ∼ 1.6. Typically, m = 1
corresponds to shallow water waves.

With regard to the volumetric sediment flux per unit width q, field observations
by Green et al. (1995) indicate that during storms a large amount of sediment is
transported as suspended load (denoted by qs), but also the bed-load part (denoted
by qb) contributes to the total flux. Hence, we write

q = qs + qb. (2.6)

For the bed-load flux the formulation of Bailard (1981) is used, in which the sediment
flux is related to the work done by the flow on the grains, which is cubic in the
instantaneous velocity. Moreover the formulation accounts for the tendency of the
sand to move downslope. For stormy weather conditions the wave-averaged bed-load
flux of Bailard (1981) becomes

qb = νb[u
2
wv − λbu3

w∇h]. (2.7)

Here νb is a coefficient (which depends on the sediment properties) and λ is the
Coulomb friction coefficient related to the angle of repose of the sediment. Typical
values for medium to fine sand are νb ∼ 4 × 10−5 s2 m−1 and λb ∼ 0.4, where νb
is computed for waves which propagate in almost the same direction as the mean
current. The first term on the right-hand side of equation (2.7) can be interpreted as a
net flux due to the combined effect of stirring by waves and transport by the current.
Here νbu

2
w is the wave stirring coefficient which is equivalent to the coefficient K(x)

mentioned by Trowbridge (1995).
According to Bailard (1981), the volumetric suspended-load sediment flux also

consists of two parts:

qs = qs1 + qs2. (2.8)
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Here qs1 is proportional to a power of the instantaneous velocity and qs2 is propor-
tional to the local bed slope. Although this concept is adopted in the present study, a
different parametrization for qs1 will be used. The reason for this is that the Bailard
(1981) formulation is only applicable when the characteristic thickness of the sediment
layer is of the order of the wave boundary layer (typically a few centimetres). On
the contrary, during storms the sediment layer is much thicker, because the combined
effects of waves and currents cause a very effective mixing of sediment over the water
column, see Van Rijn (1993). To account for this the following parametrizations have
been used:

qs1 = vC, qs2 = −λsu5
w∇h. (2.9)

Here C is the depth-integrated relative volume concentration (i.e. the volume of
sediment per surface area) and λs is a coefficient. The latter will be chosen such that
the relative magnitude of flux qs2, with respect to qs1, is the same as in the original
formulation of Bailard (1981).

To compute the flux qs1 in (2.8) we use that the concentration is described by

∂C
∂t

+ ∇ · (vC) = ws(ca − cb), (2.10)

with ws the settling velocity of the sediment grains, ca the reference volume concen-
tration (such that wsca is the sediment pick-up function) and cb is the actual volume
concentration near the bed. Note that diffusive effects have been neglected in (2.10),
because they are very small with respect to the other contributions. The corresponding
boundary condition is that the concentration vanishes far from the coast.

For the reference volume concentration the parametrization according to Van Rijn
(1993) has been adopted, which for stormy weather conditions is

ca =
(uw
û

)3

. (2.11)

Here û is a velocity which is proportional to the critical velocity for erosion of
sediment. For medium to fine sand (grain size of 4 × 10−4 m) ws ∼ 0.05 m s−1 and
û ∼ 10 m s−1, hence ca ∼ 10−3. This yields dimensional reference concentrations of the
order of 0.1 kg m−3, which are of the same order as measured reference concentrations
near the Middelkerke Bank (North Sea, near Belgium) reported by Williams et al.
(1999).

Finally the near-bed concentration in equation (2.10) is modelled as

cb =
C
δD

, (2.12)

with δ the ratio of the characteristic thickness of the suspended-load sediment layer
and the actual water depth. Here δD/ws is a characteristic timescale for sediment
deposition. From field data, see e.g. Williams et al. (1999), it follows that δ ∼ 0.15 for
strong waves superimposed on a mean current. It is further assumed that this param-
eter is a constant. The motivation for this is that turbulence is generated both near
the bottom and at the free surface (by whitecapping). Hence the turbulent mixing of
sediment during storms is proportional to the actual water depth and this determines
the sediment layer thickness. The result is consistent with the parametrizations of
the vertical diffusion coefficient of sediment as discussed e.g. in Van Rijn (1993) and
Fredsoe & Deigaard (1993). We will return to this point in the § 6.

At the shoreface boundary (x = 0), the cross-shore advective sediment transport flux
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component vanishes. Locally there is a small sediment flux due to diffusive processes.
However in the forthcoming analysis (see § 3.3) h will be periodic in the alongshore
direction, hence the alongshore average of this contribution is zero. Consequently,
there is no net sediment supply from the shoreface and all sediment is sourced by
local resuspension.

2.3. Final equations of motion

Substitution of the expressions (2.6)–(2.9) in equation (2.3) results in the final bottom
evolution equation

(1− p)∂h
∂t

+ ∇ · [vC− λsu5
w∇h] + νb∇ · [u2

wv − λbu3
w∇h] = 0. (2.13)

Here use has been made of the fact that zb = −H + h, where the mean bathymetry
H is time-independent. In the final results use is made of the fact that sediment
transport only takes place during storms, which occur during a certain time fraction.

Furthermore, the water motion is described by equations (2.1)–(2.2), the wave
orbital velocity amplitude is given in (2.5) and the sediment concentration follows
from equations (2.10)–(2.12).

3. Basic state, scaling and stability analysis
3.1. Basic state

Field observations of the bathymetry of the inner shelf indicate that the mean bottom
profile (i.e. averaged in the longshore direction) is characterized by a nearly constant
slope β∗. The slope of the outer shelf is considerably smaller. In this study we model
the reference bottom profile as

H(x) =

{
H0 + β∗x (0 6 x 6 L)
Hs (x > L).

(3.1)

Here H0 is the water depth at the transition from shoreface to inner shelf, L is the
width of the inner shelf and Hs the water depth on the outer shelf. For example,
representative values for the Long Island inner shelf are H0 ∼ 14 m, L ∼ 5.5× 103 m,
Hs ∼ 20 m, so β∗ ≡ (Hs −H0)/L ∼ 1.1× 10−3.

Now, we will consider the possibility of a mean longshore current with a cross-shore
gradient, V (x), which is driven by the mean alongshore wind stress τsy and the mean
longshore gradient in the free surface elevation, s, both assumed to be uniform. The
corresponding volume concentration of sediment per surface area is C(x).

The supposition of a steady reference current implies a basic state of the form

v = (0, V (x)), zs = s∗ y + ξ(x), C = C(x), zb = −H(x), (3.2)

where H(x) is given in (3.1). The momentum equations and concentration equation
are

f V = g
dξ

dx
, 0 = −g s∗ +

(τsy − τby)
ρD∗

, C = δD∗
(uw
û

)3

. (3.3)

However, the total depth, D∗ = H(x) + s∗y + ξ(x), introduces a dependence on the
alongshore coordinate in the second and third equations of (3.3). A consistent system
is obtained by the using the fact that the deformation of the mean free surface is
much smaller than the depth below still water level, i.e. |s∗y + ξ(x)| � |H(x)|. This
allows us to approximate D∗ by H in this equation so that the y-dependence becomes
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negligible. The consistency of this assumption can be checked as follows. From the
cross-shore balance, since V ∼ 0.5 m s−1, f ∼ 10−4 s−1 and the width of the inner shelf
is ∆x ∼ 104 m, the setup/setdown caused by the Coriolis effect can be estimated to
be less than ∼ 0.05 m, that is, much smaller than H ∼ 15 m. Furthermore, according
to observations on the east North American inner shelf (Scott & Csanady 1976; see
also Chase 1979), the longshore gradient in the sea surface elevation s∗ ∼ 2 × 10−7,
which over a distance of ∆y ∼ 100 km, would make ∆zs ∼ 0.2 m.

It has been demonstrated by Scott & Csanady (1976) and by Lentz et al. (1999)
that the momentum balances in equation (3.3) using the linear friction law (2.4),
together with (2.5) and with D∗ replaced by H , yield a good description of mean
currents in the inner shelf region of micro-tidal coastal areas. In that case the basic
state alongshore velocity profile and corresponding concentration are

V =
τsy/ρ− g s∗H

r∗
, C = δH

(uw
û

)3

, (3.4)

where r∗ and uw are defined in equation (2.5). Substitution of (3.2) in (2.2) and in
(2.13) shows that the mass conservation equation is verified identically. Furthermore,
(∂h/∂t) = 0, because there are no spatial divergences in the (alongshore directed)
sediment transport. The formulation of the model excludes the diffusive fluxes of the
basic state by formulating the bedslope effects only for the bottom perturbations.
It is implicitly assumed that the basic inner shelf equilibrium profile is due to
the balance between downslope gravitational transport and onshore wave transport
(wave asymmetry, Stokes drift, etc.). Consequently, (3.2) defines a morphodynamic
equilibrium situation.

The current profile in equation (3.4) is the result of a balance between forces
related to the longshore pressure gradient, wind stress and bottom friction. The
sign of the velocity is determined by the direction of the wind stress and that of
the pressure gradient force. Based on the field data discussed above we choose
τsy ' −0.4 N m−2 and s∗ ' 2 × 10−7. This yields an estimate of the longshore
velocity scale: U ≡ |V (x = 0)| ' 0.43 m s−1. This implies that both the longshore
wind stress and pressure gradient force a flow in the same, negative, y-direction.
Note that with this choice of wind stress we have τsy/ρ ∼ 4 × 10−4 m2 s−2 while
gs∗H ∼ 3 × 10−5 m2 s−2, so that both terms play a role in equation (3.4). This is
confirmed by the field observations on the inner shelf presented in Lentz et al. (1999).

Instead of using analytical profiles, observed current structures over the inner shelf
can be used, but data are scarce. Results for the east North American shelf (near Long
Island) are presented in Niedora & Swift (1981, 1991). During storms depth-averaged
currents tend to increase with increasing offshore distance on the inner shelf and
weakly decay on the outer shelf. Comparison with the analytical profiles suggest that
both the spatially non-uniform wave stirring and the longshore pressure gradient are
important for the maintenance of the flow.

Finally we consider the characteristic magnitudes of the bed-load and suspended-
load sediment fluxes and of the depth-integrated concentration. Taking U as a typical
scale for the mean current, it follows from equation (2.7) that a scale for the volumetric
bed-load flux per unit width is Qb = νbu

2
w0U ∼ 1.8 × 10−5 m2 s−1. Similarly, equation

(2.9) determines the scale of the suspended-load volumetric flux per unit width, which
becomes Qs = UC0, where C0 is the scale for the depth-integrated concentration. The
latter follows from equation (3.4) and becomes C0 = δH0(uw0/û)

3 ∼ 1.8×10−3 m. This
yields Qs ∼ 7.9 × 10−4 m2 s−1 which is consistent with that reported by Green et al.
(1995).
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3.2. Non-dimensional equations of motion

For further analysis it is convenient to make the equations of motion dimensionless.
Therefore we introduce characteristic magnitudes L, U, H0 and uw0 for the horizontal
length, the longshore current, the depth and the wave-orbital velocity amplitude at the
transition x = 0 from inner shelf to shoreface. Furthermore, the characteristic scales
Qb, Qs and C0 for the bed-load flux, suspended-load flux and the depth-integrated
concentration are used. These scales have been discussed in the previous subsection.
Then three timescales appear in a natural way which are defined as

Th =
L

U
, Tms =

(1− p)H0L

Qs
, Tmb =

(1− p)H0L

Qb
. (3.5)

The hydrodynamic timescale Th follows from scaling the three equations (2.1)–(2.2)
and the two morphodynamic timescales Tmb and Tms result from scaling equation
(2.13). Characteristic values are Th ∼ 1.2×104 s, Tms ∼ 5.9×107 s and Tmb ∼ 2.6×109 s.

The variables are made dimensionless as follows:

t = Tmst̃, (x, y) = L(x̃, ỹ), zs =
U2

g
z̃s, zb = H0z̃b,

v = Uṽ, uw = uw0ũw,
τs
ρ

=
H0

L
U2τ̃s, C = C0C̃.

The reason to scale time with Tms is that we wish to look for morphodynamic
instabilities, which are mainly controlled by suspended-load transport. The scale for
the free surface is motivated by the fact that the pressure gradient force and advective
terms should be of the same order of magnitude.

The non-dimensional momentum (2.1) and mass conservation equation (2.2) are
(hereafter tildes are dropped):

ε
∂v

∂t
+ (v · ∇)v + f̂ez × v = −∇zs +

τ s − τ b
D

, (3.6)

ε
∂D

∂t
+ ∇ · (Dv) = 0, (3.7)

whilst the non-dimensional concentration equation (2.10) and bottom evolution equa-
tion (2.13) are

γ

[
ε
∂C
∂t

+ ∇ · (vC)

]
= u3

w − CD , (3.8)

∂h

∂t
+ ∇ · qs + δb∇ · qb = 0. (3.9)

Here

D = F2zs +H − h, τ b = ruwv,

qs = vC− λ̂su5
w∇h, qb = u2

wv − λ̂bu3
w∇h,

and the model parameters are

ε =
Th

Tms
, F2 =

U2

gH0

, f̂ =
fL

U
, r =

r∗0L
UH0

,

γ =
δH0U

Lws
, δb =

Qb

Qs
, λ̂s =

H0

L

u5
w0

Qs
λs, λ̂b =

H0

L

uw0

U
λb.
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Using the characteristic numbers discussed in the previous subsection it follows

that ε = O(10−4), F2 = O(10−3), f̂ = O(1), r = O(1), γ = O(10−3), δb = O(10−2),

λ̂s = O(10−4) and λ̂b = O(10−3).
The small values of the parameters ε and δb indicate that the hydrodynamic

timescale is much smaller than the morphodynamic ones. This allows the adop-
tion of the quasi-steady hypothesis, that is, the fluid instantaneously adjusts to the
bathymetric changes. This permits the time derivatives to be dropped (ε ≈ 0) in
the hydrodynamic and concentration equations (3.6)–(3.8). The small value of the
Froude number F allows terms proportional to F2 to be neglected in the forthcoming
analysis. This rigid-lid approximation is consistent with the choice of our basic state,
which only exists for low Froude numbers. Finally we remark that parameter γ, which
measures the ratio of the deposition timescale and the advective timescale, is very
small.

The dimensionless reference bathymetry and current profile become

H(x) =

{
1 + βx if 0 6 x 6 1

1 + β if x > 1
, V (x) =

{
±(1 + aβx)Hm/2 if 0 6 x 6 1

±(1 + aβ)Hm/2 if x > 1,
(3.10)

and the dimensionless free surface elevation of the basic state is

zs ≡ ζ = sy + ξ, C = H1−3m/2, (3.11)

where

β =
L

H0

β∗, a =
g|s∗|H0

r∗0U
, s =

gs∗L
U2

,

with characteristic values β = O(1), a = O(10−1) and s = O(10−1). Note that |s| = a r.
The sign of the flow is determined by the direction of the applied wind and longshore
pressure gradient forces. When the pressure force and wind stress drive a current in
the same direction, as is usually the case, it follows from the definition of velocity scale
U that a can vary between 0 (no pressure gradient) and 1 (wind stress negligible).

3.3. Stability analysis

The formation of rhythmic bed forms can now be investigated by studying the
dynamics of small perturbations evolving on the basic state defined in equation (3.2).
Hence we substitute

v = (0, V ) + (u(x, y, t), v(x, y, t)), zs = ζ + η(x, y, t),

C = C + c, zb = −H + h(x, y, t),

in equations (3.6)–(3.9), where all basic state variables are now to be considered
as dimensionless. After linearization and using the properties of the basic state, it
appears that the equations for the perturbations allow alongshore travelling and
growing wave solutions with an as yet unknown cross-shore structure. Thus we
consider perturbations of the form

(u, v, η, c, h) = Re{(ū(x), v̄(x), η̄(x), c̄(x), h̄(x))eiky+ωt}. (3.12)

Here k is the wavenumber and ω a complex frequency. The real part, Re(ω), denotes
the growth rate of the perturbation (for continuous storms) and −Im(ω) the frequency.
Instability occurs if Re(ω) is positive: then the mode grows exponentially in time.
The part which describes the bottom is called a topographic wave. As a result the
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linearized equations for the perturbations, dropping overbars for convenience, reduce
to

ikV +
r

H1+m/2
−f̂ d

dx
0

dV

dx
+ f̂ ikV +

r

H1+m/2
ik 0

dH

dx
+H

d

dx
ikH 0 0

γ

(
dC

dx
+ C

d

dx

)
γikC 0 γikV +

1

H





u

v

η

c


=



0

s/H

ikV

−C/H2


h

(3.13)

and equation (3.9) becomes:

ωh = − d

dx

(
uC − λ̂sH−5m/2 dh

dx

)
− ik(vC + Vc)− λ̂sH−5m/2k2h

−δb d

dx

(
H−mu− λ̂bH−3m/2 dh

dx

)
− δb(ikH−mv + λ̂bH

−3m/2k2h). (3.14)

The first step is to solve equations (3.13) for u, v, η and c for a given bottom
perturbation h. This problem will hereafter be called the flow over topography problem
(FOT). Physically, this means finding the response of the flow to a given perturbation
on the sea bed.

The second step is to substitute these results into the bottom evolution equation
(3.14). Together with the boundary conditions, which have been discussed in the
previous section, this defines an eigenvalue problem of the form

ωh = Bh,

where ω is the eigenvalue and h(x) the eigenfunction and where B is a linear operator
which can be obtained by straightforward computations. The solutions are obtained
numerically by the application of spectral methods, for details see Falqués et al.
(1996a) and references therein. The numerical model which solves this problem is
called MORFO25.

4. Model results
4.1. Parameter setting

In this section the results obtained with the numerical model will be presented. In
§ 4.2 the micro-tidal inner shelf of Long Island, located at a latitude of 40◦N, will be
considered as a default case. It has been selected because many data on its geometrical
and physical characteristics are available, which have been discussed in §§ 2.2 and 3.1.
The basic-state longshore current is directed to the south, hence V (x) in (3.10) is
negative. This results in the following relevant default parameter values:

β = 0.43, f̂ = 1.19, r = 0.91, s = 6.8× 10−2, γ = 3.43× 10−3,

m = 1.6, δ = 0.15, δb = 2.20× 10−2, λ̂s = 3.50× 10−4, λ̂b = 2.40× 10−3.

}

(4.1)
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Figure 2. Non-dimensional growth rate and phase speed as a function of the wavenumber for the
first five modes. Parameter values are given in (4.1) and representative for the Long Island inner
shelf; furthermore V < 0.

In § 4.3 we will focus on the dynamics of bed forms for other micro-tidal inner
shelves. Those in the northern hemisphere are characterized by a current which has

the coast to the right (f̂ > 0, V < 0). On the Argentine shelf the current is directed

to the north (V > 0 in the present model), so f̂ < 0. However, the latter situation is
equivalent to the former one because the system has a mirror symmetry with respect

to the y = 0 plane. Therefore, there are only two independent situations, f̂V < 0 and

f̂V > 0.

4.2. Default case and sensitivity experiments

Here solutions of the morphodynamic eigenvalue problem (3.13)–(3.14) are presented
for the Long Island inner shelf. The reference bathymetry and current are given in
(3.10) and the parameter values are specified in (4.1). Results will be compared with
observations; the physics underlying the results will be discussed in the next section.

In figure 2 curves are shown of the dimensionless growth rate σ = Re(ω) and
migration speed Vmi = −Im(ω)/k of the first five modes as a function of the non-
dimensional wavenumber k. As can be seen all growth rate curves attain a maximum
value for a specific k. This differs from the results of Trowbridge (1995), where
the growth rates monotonically increase with increasing k up to a saturation value.
This difference is due to the fact that the present model accounts for the preferred
downslope movement of the sediment, which is very effective for short wavelengths.
The maximum growth rate is σmax ∼ 0.3 and is found for k ∼ 8.5. The dimensional
longshore spacing of this so-called most preferred mode is 4.1 km. This agrees with
the observed spacing of shoreface-connected sand ridges on the Long Island inner
shelf (Swift et al. 1978).

The dimensional e-folding time of this mode can be estimated as follows. For
continuous storms it would be Tms/σmax ∼ 6.3 yr, where Tms has been computed from
(3.5). In reality storms only occur during a certain time fraction µ (typically µ ∼ 0.05),
hence the e-folding timescale is

τ∗ =
1

σmax

Tms

µ
∼ 125 yr.

Although there are no field data to compare with, this seems quite a reasonable value
considering the geological timescale of the inner shelf.

The migration speed of the modes varies between small positive values for long
topographic waves (upstream propagation, since V < 0) and small negative values
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Figure 3. Contour plots of the three bottom modes with the largest growth rate. Shoals and pools
are indicated by continuous and dashed lines, respectively. In each plot the y-axis represents the
shoreface and the x > 0 axis the inner shelf. The direction of the basic current is shown by an
arrow. Note the upcurrent rotation of the ridges.

for shorter wavelengths. In particular, the most preferred mode has a dimensional
celerity of

Vmi,∗ = Vmi µ
L

Tms
∼ −2.1 m yr−1,

which is in the downstream direction. Both the magnitude and direction of this
migration speed are in good agreement with the field data on the Long Island inner
shelf. Note that the model predicts that modes having wavelengths much longer than
the preferred mode move upstream. This is another difference with the results of
Trowbridge (1995) and it is caused by the fact that in our model both suspended-load
and bed-load transport are incorporated; see the next section for further details.

The shape of the modelled ridges is shown in figure 3 for the first three modes
and for the wavenumber which corresponds to the maximum growth rate. Clearly,
the orientation of the dominant bed forms is such that they are upcurrent rotated:
the seaward ends of the crests are shifted upstream with respect to their shoreface
attachments. This agrees well with the observed orientation of the shoreface-connected
ridges, not only on the Long Island inner shelf but on any inner shelf.

Figure 4 shows a greyscale plot of the first mode in figure 3 together with the
corresponding perturbation on the current. The offshore deflection of the current
over the crests and the onshore deflection over the troughs can be seen, as well as the
acceleration of the flow over the crests and the deceleration over the troughs. This
behaviour has also been observed in the field (Swift et al. 1978).

In figure 5 the most preferred bed form is shown together with a contour plot of
the perturbation in the concentration and with a vector image of the perturbation in
the sediment flux. From this figure it is seen that the depth-integrated concentration
is smaller over the crests than over the troughs. Furthermore, the sediment flux has
an offshore component above the ridges and an onshore deflection in the trough
areas. The principal direction of the perturbation in the flux coincides to a good
approximation with that of the orientation of the ridges. This implies that the
magnitude of the total sediment flux is larger in the trough than in the ridge areas.

In figure 6 is shown the relative contributions of both suspended-load and bed-
load fluxes to the total growth rate and migration speed for the first modes of
figure 2. It appears that the growth of the ridges is induced merely by divergences
in the suspended-load transport. The bed-load contribution is positive for k < 8 and
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Figure 4. Greyscale plot of the first bottom mode in figure 3 with the associated perturbation of the
current indicated by arrows. Shoals and pools are indicated by light and dark shades, respectively.
Note the offshore current deflection over the crests.

negative for larger wavenumbers. However, bed-load transport cannot be neglected
because it controls to a large extent the downstream migration of the ridges. Note
that the sole contribution of suspended-load transport would result in an upstream
migration speed. The effect of bed-load is that modes with k > 4, including the most
preferred mode, migrate downstream.

We now investigate the dependence of the model results on the parameters. This
is important in order to gain knowledge about the necessary field conditions for
the growth of the shoreface-connected sand ridges. For all experiments described
hereafter the default values of (4.1) have been used, unless stated otherwise. First,
parameter a in the basic-state current profile has been changed, keeping the ratio s/a
fixed. Physically this means that the relative contribution of the alongshore pressure
gradient to V (x) is changed (a = 1: pure pressure-driven flow, a = 0: pure wind-
driven flow) while keeping the bottom friction and velocity scale U constant. This
was done because in previous studies (Trowbridge 1995; Falqués et al. 1998a, b) it
was found that the instability mechanism was strongly affected by the current profile.
On the other hand, as figure 7 indicates, growth rates and migration speeds in the
present model show only a weak dependence on a. This is due to the fact that now
suspended-load transport is taken into account. We remark that the dependence of
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Figure 5. Greyscale plot of the first bottom mode in figure 3 with the associated perturbation of
the sediment flux indicated by arrows. Shoals and pools are indicated by light and dark shades,
respectively. The contour lines refer to the perturbation in the concentration (solid lines: positive
values, dashed lines: negative values).
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Figure 6. Relative contribution of suspended-load and bed-load fluxes to (a) the growth rate and
(b) migration speed of the first mode of figure 2.

the model results on a drastically increases if the wave stirring exponent m is close
to zero (i.e. spatially uniform wave stirring). It is important to realize that this is not
physically realistic, as typically m > 1.

This observation suggested carrying out sensitivity experiments by varying the
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Figure 7. (a) Growth rate and (b) migration speed as a function of the wavenumber for a = 0, 0.5
and a = 1; other parameters have their default values.
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Figure 8. (a) Growth rate and (b) migration speed as a function of the wavenumber for
m = 1.0, 1.6 and a = 2; other parameters have their default values.

exponent m in the wave stirring coefficient. As can be seen from the results in figure 8,
it appears that growth rates decrease with decreasing m whereas the migration speeds
are hardly affected. For m = 0 (spatially uniform wave stirring) positive growth
rates are only found for pressure-driven currents (a = 1), but they are very small:
typical e-folding timescales become of the order of 104 yr. The corresponding spacing
is 13.3 km and the migration speed −3.3 m s−1. Hence the incorporation of depth-
dependent wave stirring is essential to obtain growth of shoreface-connected ridges
with realistic e-folding timescales and migration speeds. Also the intensity of the wave
stirring itself is very important: if the near-bottom wave velocity amplitude at the
shoreface is weaker than about 0.5 m s−1 then extremely long e-folding timescales are
obtained.

Another parameter that has been varied is δ, the ratio of the characteristic
suspended-load layer thickness and the water depth. Experiments have been car-
ried out for δ in the range between 0.1δ0 and 2δ0, where δ0 = 0.15 is the default
value. Since the morphological timescale Tms depends on δ as well, results are shown
in a relative sense, i.e. scaled with respect to their default values. Figure 9 shows the
relative preferred wavelength, migration speed and e-folding timescale as a function
of the ratio δ/δ0. It can be seen that for (δ/δ0) > 0.45 (i.e. for δ > 0.07) results are
rather insensitive to the value of δ. For smaller δ-values a strong increase in both the
preferred spacing and the e-folding timescale is observed.

The transverse bed slope, β, and the bed slope coefficients, λ̂s and λ̂b, have a
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Figure 10. (a) Growth rate and (b) migration speed of the first mode as a function of the

wavenumber for different values of the Coriolis parameter f̂. All other parameters have their
default values.

significant effect on growth rates. The results of the sensitivity experiments (figure
not shown) can be summarized as follows. The maximum growth rates increase
monotonically with increasing β, but the characteristics of the preferred modes do
not change. In contrast, increasing the value of the bed slope coefficient leads to
smaller growth rates and the wavenumber of the most preferred mode shifts to
smaller values. The instability mechanism is hardly affected if parameter γ, which is
a measure of settling lag effects, is varied within realistic bounds. This indicates that
in equation (3.13) settling effects can be neglected to a good approximation.

We also investigated the sensitivity of the model results to variations in the grain
size. Considering finer sediment results in a reduction of the settling velocity and in
an increase of the reference concentration (û in equation (2.11) will decrease), hence
the suspended-load timescale will become smaller. This results in larger values of the
dimensionless parameters γ and λs and a smaller value of δb. The observed trend
is that with decreasing grain size the preferred mode is characterized by a smaller
e-folding timescale, larger spacing and a slower migration speed. For example for a
grain size of 2.5 × 10−4 m the e-folding timescale is 60 yr, the spacing is 5 km and
the migration −0.9 m yr−1; whereas for coarser sediment (5× 10−4 m) these values are
250 yr, 4.0 km and −2.4 m yr−1, respectively.

The effect of Earth’s rotation on the instability mechanism has been investigated by
carrying out experiments with all parameters having their default values and different

values of the Coriolis parameter: f̂ = 0, 1.85,−1.85, representative of an inner shelf
which is located at the equator, the North Pole and the South Pole, respectively.
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Long Island Maryland Florida Argentina

Location and geometry
latitude 40◦N 38◦N 27◦N 37◦ S
H0 (m) 14 10 10 10
Hs (m) 20 17 15 15
L (km) 5.5 15 12 14

Water motion and sediment fluxes
uw0 (m s−1) 1.0 1.3 1.0 1.0
r∗0 (×10−3 m s−1) 1.0 1.3 1.0 1.0
U (m s−1) 0.43 0.31 0.40 0.40
Qb (×10−5 m2 s−1) 1.6 2.2 1.6 1.6
Qs (×10−4 m2 s−1) 7.9 8.9 5.3 5.3
Tms (yr) 1.8 3.6 4.3 5.0

Model results for most preferred mode
spacing (km) 4.1 5.9 5.7 5.7
e-folding time (yr) 125 145 235 270
migration speed (m yr−1) −2.1 −2.6 −3.0 +2.9

Table 1. Input parameters and model results for the inner shelves of Long Island, Maryland, Florida
and Argentina. The first part of the table shows the location and geometry of these shelves, the
second the scales of the water motion and sediment fluxes and the third the model results in terms
of the characteristics of the most preferred bed form.

Since the basic current V < 0 in all these experiments, the different cases correspond
to no downwelling, downwelling and upwelling conditions, respectively. The results,
shown in figure 10, indicate that Earth’s rotation hardly affects the topographic
waves. In this regime the Coriolis force produces just an inshore shift of the ridges
for upwelling conditions and an offshore shift for downwelling conditions along with
a slight inhibition of the instability in the latter case.

Finally the sensitivity of the model results to the friction parameter has been
investigated by varying the bottom friction coefficient r, but keeping the ratio s/r
constant and all other model parameters at their default value. Physically this means
that the form drag on the bottom is increased, without changing the skin friction
which forces the sediment transport. At the same time the wind stress and longshore
pressure gradient are adjusted to maintain the same velocity scale U. It then follows
that changing the form drag does not have a substantial effect on the spacing,
migration and timescale of the most preferred mode.

To summarize, the model indicates that the necessary conditions for the formation of
shoreface-connected sand ridges are an inner shelf with a sufficiently large transverse
slope and availability of medium-fine sand. Furthermore, the common occurrence of
storms with large stirring of sediment by waves is required.

4.3. Application to other micro-tidal inner shelves

To investigate the versatility of the model it has been applied to other micro-tidal
inner shelves as well, including those located near Maryland and Florida, which are
both along the east coast of the United States, and the inner shelf of Argentina (Punta
Medanos). Detailed information about the shelf geometry, the water motion and the
properties of these shoreface-connected ridges is given in Duane et al. (1972), Swift
et al. (1981), Parker et al. (1982), see also Trowbridge (1995) and references therein.

The relevant information has been summarized in table 1, where for convenience
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values for the default shelf (Long Island) are also given. Parameters which are kept
at their default value, as discussed in §§ 2 and 4.1, are the porosity p, the ratio δ of
the suspended layer thickness and the water depth, the bed-load coefficient νb, the
alongshore wind stress τsy , the grain size, exponent m in the wave stirring coefficient
and storm fraction µ. Furthermore, the longshore pressure gradients were neglected;
in the previous section it has been shown that the results are only weakly dependent
on the current profile.

The main difference between the Maryland shelf and the Long Island shelf is
that it is located further to the south and it is shallower and wider. Consequently the
wave-orbital velocity at the transition to the shoreface is larger, resulting in a stronger
friction and thereby a weaker current. The Florida shelf has a similar geometry to the
Maryland shelf, but wave effects are weaker here and it is located further southward.
Finally the Argentina shelf has been selected because it is located on the southern
hemisphere.

The numerical model MORFO25 has been run with new values for the dimension-
less parameters f̂, β, r, γ, δb, λ̂b and λ̂s, which follow from the input parameters given
in table 1. The final model results for the spacing, e-folding timescale and migration
speed of the most preferred mode are also presented in table 1 and are in good
agreement with the field data.

5. Physical interpretation
In this section the physical mechanism responsible for the growth and observed

characteristics of shoreface-connected sand ridges will be discussed. The basic concept
has already been explained by Trowbridge (1995) for the case of an irrotational flow
model, bed-load sediment transport without slope correction term and spatially
uniform stirring by waves. He demonstrates that the necessary conditions for the
growth are the presence of a transversely sloping reference bottom and that the
current should have an offshore deflection over the bars. The latter occurs if the
ridges have an upcurrent orientation (seaward ends of the crest shifted upstream with
respect to their shoreface attachment). This is a consequence of mass conservation,
which causes the cross-bank flow component to increase over the ridge. The movement
of a column into deeper water will cause a mass deficit which must be compensated
by a convergence of the flow. As in this situation the bed-load sediment flux, qb,
is proportional to the velocity of the current, there will be convergence of sediment
above the crests and thus the ridges will grow, see figure 11. The convergence of
the bed-load sediment flux is more effective on the downstream side of the ridge
because the longshore movement of the control volume causes an additional mass
deficit in this area. This causes the downstream migration of the bed forms. Thus
shoreface-connected ridges are trapped at the inner shelf, because in this area the
slope of the bottom is much larger than at the outer shelf.

An important new element of the present model, with respect to the one of Trow-
bridge (1995), is the suspended-load sediment transport. Since the main balance in
the dynamics of suspended sediment concentration is between erosion and deposition
(equation (3.8) if γ � 1) and the diffusive terms are small, the suspended-load sed-
iment flux is qs ≈ KDv, where K = u3

w is a wave stirring coefficient. Making use of
mass conservation ∇·qs becomes Dv ·∇K . For spatially uniform wave stirring ∇K = 0
and therefore there will be neither growth nor migration of bed forms. If spatially
non-uniform wave stirring is taken into account upcurrent rotated ridges will grow:
due to the decreasing wave stirring activity with increasing water depths (∂K/∂x < 0)
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Figure 11. Schematic view of the transverse bottom slope mechanism. An upcurrent oriented
ridge produces offshore deflection of the flow. Then, flow into deeper water must converge so that
sediment convergence occurs over the ridge.

the suspended sediment flux will converge over the bars where an offshore deflection
is produced (u > 0). Both the bed-load flux and the suspended-load flux will act in
a similar way, but spatially non-uniform wave stirring causes enhanced growth of
the ridges which is crucial to predict realistic e-folding timescales. On the other hand
the migration speeds are only marginally affected (a small reduction, see figure 6) by
depth-dependent stirring. This stems from the fact that the phase shift between the
cross-shore velocity component and the bottom perturbations is very small.

Linearizing the combination of the equations for the continuity (3.7), the concen-
tration (3.8) and the bottom evolution (3.9) (in the limit of F , ε and γ → 0) results
in

∂h

∂t
+ δb

V

H1+m

∂h

∂y
− ∇ · (λeff∇h) =

[
3

2

m

H3m/2
+ δb

(m+ 1)

H (1+m)

]
dH

dx
u, (5.1)

where λeff = λ̂sH
−5m/2 + δbλ̂bH

−3m/2. On the right-hand side are the sources of
instabilities described above. The second and third terms on the left-hand side describe
the migration and the diffusion of the bed forms, respectively. We remark that for

m = λeff = f̂ = r = 0 our model becomes equivalent to the one studied by Trowbridge
(1995).

The behaviour of the perturbation in the sediment flux in figure 5 can be understood
by analysing the suspended-load flux which yields the dominant contribution. This
flux has components u3

wHu and u3
w(Hv− Vh) in the offshore and longshore direction,

respectively. The offshore component is in phase with the offshore velocity component.
The longshore component of the flux consists of two opposing contributions: for
example above a crest they are directed in both the downstream and upstream
directions. From the continuity equation it follows that |v| 6 (h/H)|V |, where the
equal sign holds in case of transverse bars, with the consequence that the alongshore
component is negative above the crest. The result is that over the bars sediment flux is
deflected offshore and decreases alongshore; the opposite occurs in the trough region.

Finally we remark that in the present model the flow is rotational because of
Coriolis and bottom friction forces. The latter modify the morphodynamic instability

mechanism. For V/f̂ < 0 (downwelling conditions), which applies to most field
situations, the Coriolis force has an onshore directed component and hence will
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reduce the offshore deflection of the current over the ridges. This argument shows
why in § 4.2 it was found that growth rates decrease with increasing values of the
Coriolis parameter, although the effect is quite weak.

6. Discussion
The main indication of the present study is that shoreface-connected sand ridges

will only form on inner shelves with a sufficiently large transverse slope and with
the bottom consisting of medium to fine sand. Also, severe storms should frequently
occur, resulting in both an alongshore current and strong wave orbital motion near
the bed. As a consequence sediment will be stirred by waves and transported (as
suspended load) by the mean current. This picture seems to be confirmed by the field
observations of Green et al. (1995).

However the model is a gross simplification of reality. As can be seen from figures
171–173 in Duane et al. (1972) or figure 1 in Parker et al. (1982) the observed
patterns of shoreface-connected ridges are rather complex and the elongated shape
and upcurrent orientation are only indicative of the mean characteristics. Many ridges
have secondary shoals (see e.g. figure 4 in Swift et al. 1978) which suggests that other
mechanisms may play a role.

First, the vertical structure of the currents is neglected. As shown by e.g. Niedoroda
et al. (1984) and Niedoroda & Swift (1991) the three-dimensional flow structure
during a storm leads to an offshore directed sediment transport during storms. This
will modify the two-dimensional mechanisms analysed in the present study. Also, a
three-dimensional model will probably generate new bed–flow couplings. The analysis
of a three-dimensional flow over an uneven bed, which is a complicated problem, is
considered to be an important topic for future research. Secondly, nonlinear terms
in the equations for the perturbations have been ignored in the present study. Thus,
a challenging issue is to perform a nonlinear finite-amplitude analysis of the ridge
behaviour, which would lead to a prediction of the amplitude of the ridges. This kind
of nonlinear modelling is at present under investigation and preliminary results for
uniform wave stirring and only bed-load sediment transport have been discussed in
Calvete et al. (1999). Thirdly, the transport of sediment during fair weather conditions
is ignored in the present model. If present, then the relation between the sediment
fluxes and the current is highly nonlinear, as can be seen from the parametrizations
discussed in Bailard (1981), Fredsoe & Deigaard (1993) and Van Rijn (1993). If this
regime is studied for a steady reference flow, see Falqués et al. (1998a), other types of
bottom modes are obtained.

The discussion above suggests that it is preferable to specify a storm climatology
and run the model partly in the severe weather mode and partly in the fair weather
mode. This is a difficult problem because it requires the use of different velocity
profiles and different velocity amplitudes for each situation. Clearly such an approach
cannot be avoided in the case of strong tidal oscillations, as observed on the meso-
tidal Dutch and German inner shelf: here sediment will also be transported during
fair weather. Examination of the large-scale bed forms along the central Dutch coast,
see figure 1 of Van de Meene et al. (1996), does not immediately reveal their identity:
they could be shoreface-connected ridges or, alternatively, tidal sand banks distorted
by the proximity of the coast. The present study indicates that these two types of
bed forms have an entirely different origin. Indeed, tidal sand banks are associated
with ‘faster than linear’ dependence of the sediment transport on the current and also
Earth’s rotation plays an important role (Huthnance 1982; Hulscher et al. 1993). On
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the other hand, the correct orientation of the observed ridges can only be predicted
with a model accounting for the instability mechanism related to the transverse slope,
which is only effective during storms. This type of modelling is however beyond the
scope of the present study.

The parameter δ (ratio of the suspended sediment layer thickness and the water
depth) has been taken constant over the inner shelf. The motivation of this choice
was that the turbulent mixing coefficient for sediment particles is proportional to
the water depth. In general, this mixing coefficient will also be proportional to the
wave orbital velocity. In such a case δ will decrease in the offshore direction with
the consequence of an enhancement of the spatially non-uniform wave stirring. The
final effect will be a small increase of growth rates. Due to the lack of observations
of the thickness of the suspended sediment layer during storms a constant δ has been
chosen.

The explicit formulation of the wave stirring used in this study, see equation (2.5),
is based on a simple wave shoaling model. It assumes that the waves are linear, nearly
symmetrical and that their direction of propagation almost coincides with that of the
current. It is important to mention that the effects of the rhythmic bed forms on the
wave stirring has not been taken into account. If this were done in a straightforward
manner, by replacing the undisturbed water depth H in (2.5) by (H−h), it would result
in an increased stirring above the ridges and smaller stirring in the troughs. Such
a generalization is in fact not allowed, because the parametrization is strictly only
valid for parallel depth contours. Clearly, there are other effects which will cause a
reduction of wave stirring above the crests. One of them is wave refraction, because it
causes the distance between rays to become larger towards shallower depths. Another
relevant process is the partial breaking of the largest waves above the ridges, thereby
resulting in a decreased wave amplitude. To account properly for the effect of bed
forms on the wave stirring, a sophisticated wave transformation model based on the
eikonal equation would be required, but this is beyond the scope of the present study.

7. Conclusions
The main objective of the present study was to obtain a better understanding of

the presence and characteristics of shoreface-connected sand ridges, as observed on
the inner shelf of some coastal seas. It was argued that such large-scale bed forms
form due to a positive feedback between the water motion and the erodible bottom.
The hypothesis has been studied in the framework of a depth-integrated shallow
water model, supplemented with a sediment transport parametrization and a bottom
evolution equation. It extends an earlier model developed by Trowbridge (1995)
in that Coriolis and bottom frictional forces are included. Moreover, the sediment
transport is due to both suspended-load and bed-load processes and it explicitly
accounts for the effects of depth-dependent wave stirring as well as for the tendency
of the sediment to move downslope.

The background of the model is a basic state which is uniform in the direction
parallel to the coast. It describes a steady mean longshore flow, driven by wind
and a pressure gradient, over a reference topography. The stability properties of this
morphodynamic equilibrium with respect to small bottom pertubations, which are
rhythmic in the longshore direction, have been investigated. A systematic analysis
of the model has revealed that inherent morphologic instabilities do indeed develop
and that their properties depend on the model parameters. Necessary conditions for
shoreface-connected ridges to develop are a shelf with a large transverse slope and
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the availability of medium to fine sand. Moreover, the frequent occurrence of storms
is required with associated large wave orbital motions near the bottom and a mean
alongshore flow.

In all cases investigated scale selection occurs, i.e. the growth rate curves attain
a maximum for a specific alongshore wavenumber. The corresponding dominant
bed forms appear to be trapped at the inner shelf and are rotated upcurrent, i.e.
the seaward ends of the crests are shifted upstream with respect to where they
are attached to the shoreface. Both the predicted wavelength and spatial structure
are in good agreement with observations of shoreface-connected sand ridges on
many different storm-dominated shelves. Physically, their formation results from
an instability mechanism which stems from the transverse slope of the reference
bottom; the latter also causes an offshore current deflection over the bars. It has been
demonstrated that these characteristics can be understood from mass conservation of
both the water and the sediment.

The growth of the bed forms appears to be mainly determined by the suspended-
load flux, because it is much larger than the bed-load contribution, see Green et al.
(1995). The latter on the other hand controls the downstream celerity of the ridges.
This remarkable property is a consequence of the fact that the deposition of suspended
sediment depends on the depth-averaged sediment concentration (rather than on its
depth-integrated value). This causes spatial variations in the suspended-load flux to
be almost in phase with the bottom perturbations and to be only effective for spatially
non-uniform wave stirring.

If the timescales related to the growth and migration of the bed forms are compared
with field observations of shoreface-connected sand ridges on an inner shelf, it turns
out that good results are only found when both suspended-load sediment fluxes
and depth-dependent wave stirring are taken into account. Their incorporation also
removes the sensitive dependence of the model results on the detailed properties of
the reference current profile. Hence the model analysed in this paper is an important
generalization of the models already discussed by Trowbridge (1995) and Falqués et
al. (1998a, b).

Notwithstanding all the limitations discussed in the previous section it therefore
seems that the analysis of the present model has contributed to the fundamental
processes underlying the formation and maintenance of the ridges.
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sponsored Marine Science and Technology Programme (MAST3), under contract
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Calvete and Albert Falqués at Utrecht, (IMAU). The visit of Albert Falqués was
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The Netherlands). Part of this work was also supported by CLS (Cornelis Lely
Foundation). This research is an extension of earlier work by Amadeu Montoto. His
advice and support are gratefully acknowledged.
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